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Fixed Point Theorems for Monotone
Mappings on Partial D*-metric Spaces
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ABSTRACT. In this paper, we introduce the concept of partial D*-
metric on a nonempty set X. In the present paper, we give some fixed
point results on these interesting spaces.

1. INTRODUCTION

There are a lot of fixed and common fixed point results in different type
spaces. For example, metric spaces, fuzzy metric spaces and uniform spaces
etc. One of the most interesting is a partial metric space, which is defined by
Matthews [9]. In a partial metric space, the distance of a point to it self may
not be zero. After the definition of a partial metric space, Matthews proved
the partial metric version of Banach fixed point theorem. Then, Valero [21],
Oltra and Valero [13] and Altun et al [3] gave some generalizations of the
result of Matthews. Again, Romaguera [15] proved the Caristi type fixed
point theorem on this space.

On the other hand, there have been a number of generalizations of metric
spaces. One of such generalizations is a generalized metric space (or D-
metric space) initiated by Dhage [6] in 1992. He proved the existence of
unique fixed point of a self-map satisfying a contractive condition in complete
and bounded D-metric spaces. Dealing with D-metric space, Ahmad et al.
[1], Dhage [6, 7], Dhage et al. [8], Rhoades [14] and Singh and Sharma [20]
and others made a significant contribution in fixed point theory of D-metric
space. In 2004 Naidu et al. proved that D-metric is not continuous and
due to this fact almost all theorems which have been proved are invalid (see
[10, 11, 12]. Recently, Sh. Sedghi et al. [16, 17, 18, 19] modified the D-metric
space and defined D*-metric spaces and proved some basic properties and
some fixed point and common fixed point theorems in complete D*-metric
spaces. In this paper, using the concept of D*-metric space, we introduce
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the concept of partial D*-metric space and prove a common fixed point
theorem for three mappings in partial D*-metric spaces. At first, we recall
some concepts and properties of D*-metric space.

Throughout this paper, denote N as the set of all natural numbers and
RT as the set of all positive real numbers.

Definition 1 ([17]). Let X be a nonempty set. A generalized metric (or D*-
metric) on X is a function: D* : X3 — [0,00) that satisfies the following
conditions for each x,y,z,a € X:

(1) D*(z,y,2) =20,

(2) D*(z,y,2) =0 if and only if x =y = z,

(3) D*(z,y,z) = D*(p{z,y,z}),(symmetry) where p is a permutation

function,
(4) D*(z,y,2) < D*(x,y,a) + D*(a, 2, 2).

The pair (X, D*) is called a generalized metric (or D*-metric) space.
Immediate examples of such a function are as follows.

Example 1 ([17]). (a) Let (X,d) be a metric space then D*(z,y,z) =
max{d(z,y), d(y, 2),d(z,2)} and D*(z,y,2) = d(z,y) + d(y,z) +
d(z,x) are D*-metric on X.

(b) If X =R", then
D*(z,y,2) = llo +y = 22| + [ly + 2z — 22| + [[2 + = — 2y]|
for every x,y,z € R" is a D*-metric on X.

Example 2. Let ¢ : R x R — RT be a mapping defined as follows:

Yoy =0if 2=y, vy =5 if e3>y v =3 if o<y

Then clearly 1) is not a metric, since ¥(1,2) #(2,1). Define G : R x R x
R — RT by

G(2,y,2) = max{y(z,y), ¥ (y, 2), (2, 7)}.
Then G is a D*-metric.

Example 3. Let ¢ : RT x RT — R be a mapping defined as follows:
Y(x,y) = max{z,y}. Then clearly it is not a metric. Define G : RT x RT x
Rt — RT by

G(:I"a Y, Z) = maX{$a y} + max{y, Z} + Inax{z, ZL‘} —rT—-Yy—%
for every x,y,z € RT. Then G is a D*-metric.

Remark 1 ([17]). In a D*-metric space (X, D*), we have D*(z,z,y) =
D*(x,y,y)-
For more details of D*-metric see [16, 18, 19].
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2. PARTIAL D*-METRIC SPACE

In this section we introduce the concept of a partial D*-metric space and
prove its properties.

Definition 2. A partial D*-metric on a nonempty set X is a function p* :
X x X x X — RT such that for all x,y,z,a € X:

(p1) v =y =2 <= p'(z,z,2) =p"(z,y,2) = p"(y,9,y) = p"(2,2,2),

(p2) p*($7$7$) < p*(IE?y) Z);

(p3) p*(z,y,2) = p*(p{x,y,2}), (symmetry) where p is a permutation
function,

(01) 7*(2,9,2) < 7" (2,9,0) + P*(a, . 2) — 7" (@, 0, ).

A partial D*-metric space is a pair (X, p*) such that X is a nonempty set
and p* is a partial D*-metric on X. It is clear that, if p*(x,y, z) = 0, then
from (p1) and (p2) ¢ =y = 2. Butif x = y = z, p*(z,y,2) may not be
0. A basic example of a partial D*-metric space is the pair (R, p*), where
p*(z,y,2) = max{z,y, z} for all x,y,z € RT.

It is easy to see that every D*-metric is a partial D*-metric, but the
converse need not be true.

In the following examples a partial D*-metric fails to satisfy properties of
D*-metric.

Example 4. Let p* : Rt xRT xRT — R be a mapping defined as follows:
p*(xaya Z) = |$ - y| + ‘y - Z’ + ’IE - Z| + max{:c,y, Z}’
Then clearly it is a partial D*-metric, but it is not a D*-metric.

Example 5. Let (X, p) be a partial metric space and p* : RT x RT x Rt —
R* be a mapping defined as follows:

p*(x,y,2) = p(z,y) + p(z,2) + p(y, 2) — p(x,2) — p(y,y) — (2, 2).

Then clearly p* is a partial D*-metric, but it is not a D*-metric.

Remark 2. Note that p*(x,z,y) = p*(z,y,y), because,
(i) p*(z,z,y) < p*(z,z,2) + p*(2,y,y) — p*(z,2,2) = p*(z,y,y) and
similarly
(i) p*(y,y,2) < p*(v,9,9) + p*(y, 2, %) — p*(y,4,y) = " (y, 2, ).
Hence by (i)and(ii), we get p*(z,x,y) = p*(x,y,y).
Lemma 1. Let (X, p*) be a partial D*-metric space. If we define p(x,y) =
p*(x,y,y), then (X,p) is a partial metric space

Proof.  (p1) ® =y <= p*(z,z,2) =p*(z,y,y) = p(y,y,y) < p(z,z) =
p(z,y) = p(y,y),
(p2) p*(m,x,x) < p*(IE?y)y) 1mphes that p(l"x) < p(:l:ay)v
(p3) p*(x’yay) = p*(y,x,x) lmphes that p(IE,y) = p(yax)a
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(pa)

p*(y,y,x) < p*(y,y,2) + p* (2,2, x) — p*(2, 2, z) implies that
p(z,y) < ply,2) + p(z, ) — p(2,2). O

Let (X, p*) be a partial D*-metric space. For r > 0 define

By (z,r) ={y e X : p*(z,vy,y) < p*(z,z,x) + 1}

Definition 3. Let (X, p*) be a partial D*-metric space and A C X.

(1)
(2)

If for every x € A there exists v > 0 such that Bp~(z,r) C A, then
subset A is called an open subset of X.

A sequence {x,} in a partial D*-metric space (X, p*) converges to
if and only if p*(x,z,x) = nli_}ngop*(zvn,a:n,x), That is for each e > 0

there exists ng € N such that
pi(x,x,zpn) < p*(x,z,2) + € Vn >ng, (1)
or equivalently, for each € > 0 there exists ng € N such that
p(x,xp, ) < p*(x,2,2) + € Yn,m > ng. (2)
Indeed, if (1) holds then

p*(a:,:cn,azm) = p*(xnaxa l‘m)
S p*(iﬂn,l', .’E) +p*(l’,$m,$m) - p*($; -’ny)
<e+e+p(z,x ).

Conversely, set m =n in (2) we have p*(xy, pn, x) < p*(z,z,2) + €.
A sequence {x,} in a partial D*-metric space (X,p*) is called a
Cauchy sequence if lm p*(zy, Tm, Ty) exists.

n,1M—00

Let 1« be the set of all open subsets X, then Ty« is a topology on X
(induced by the partial D*-metric p*).

A partial D*-metric space (X,p*) is said to be complete if every
Cauchy sequence {xy} in X converges, with respect to T+, to a point
reX.

If a sequence {z,} in a partial D*-metric space (X,p*) converges to x
then we have

p*(xn,xn,$m) S p*(xna xn,x) +p*(x7xmawm) - p*(:l?,x,x)

<e+4e+p(r,z, ).

Lemma 2. Let (X,p*) be a partial D*-metric space. If r > 0, then ball
By (z, 1) with center x € X and radius v is an open ball.
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Proof. Let y € Bp«(x,r) ,then p*(z,y,y) < p*(x,z,x) +r. Let p*(z,y,y) —
p*(z,x,x) = 6. Let z € Bp-(y,r — J), by triangular inequality we have
p*(z,2,2) <p*(z,2,9) + 0" (y,2,2) — P* (4,9, %)
=p*(z,y,y) —p"(z,z,2) + p*(2,2,9) = p*(v,v,9) + p"(z,2,2)
<O0+r—0+p(z,x, )

=p*(z,x,x) +r.
Thus z € Bp«(z,7). Hence By«(y,r — ) C Bp(z,7). Therefore the ball
By« (z,r) is an open ball. O

Each partial D*-metric p* on X generates a topology 7, on X which has
as a base the family of open p*-balls {By+(z,¢) : z € X, ¢ > 0}.

The following example shows that a convergent sequence {z,} in a partial
D*-metric space (X, p*) need not be a Cauchy sequence. In particular, it
shows that the limit of a convergent sequence is not necessarily unique.

Example 6. Let X = [0,00) and p*(z,y,z) = max{x,y, z}. Then it is clear
that (X, p*) is a complete partial D*-metric space. Let

1, n =2k,
Ty =
2, n=2k+1.

Then clearly it is convergent sequence and for every x > 2 we have
h_)m P (X, T, x) = p*(z,x,x), therefore
n—oo

L(zy) = {z|z, — x} = [2,00).
But lm p*(xn, Tm,Tm) does not exist. Hence {x,} is not a Cauchy se-

n,Mm—00
quence.

The following lemma plays an important role in this paper.
Lemma 3. Let (X,p) be a partial metric space then there exists a partial
D*-metric p* on X such that
(a) {zn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy
sequence in the partial D*-metric space (X,p*),
(b) the partial metric space (X,p) is complete if and only if the par-
tial D*-metric space (X, p*) is complete. Furthermore, p*(x,x,y) =
p(z,y) for every z,y € X.

Proof. Define

p*(x,y, 2) = max{p(z,y), p(z, 2),p(y, 2)} Va,y,2 € X.

Then it is easy to see that p* is a partial D*-metric and p*(z, z,y) = p(x,y)
for every x,y € X. O

The following Lemma shows that under certain conditions the limit is
unique.
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Lemma 4. Let {z,} be a convergent sequence in a partial D*-metric space
(X,p*) such that x, — = and x,, —> y. If

lim p*(zp, Tn, 2n) = p* (2, 2,2) = p* (¥, 9, ¥),

n—oo
then © = y.
Proof. As

p*(x,y,y) = p*(z,2,y) < p*(@, 2, 20) + p*(Tn, ¥, y) — D" (Tns Tn, Tn),
therefore
p*(xna Tn, xn) g p*(xa x, ':En) + p*(SUn, Y, y) - p(ZE, Y, y)

By given assumptions, we have

lim p*(wn,mn,x) = p*(.’L’,IIZ‘,ZE),

n—oo
lim p*(:):n,xn, y) = p*(y7y7y)7
n—odo
lim p*(xn, Ty, zy) = p*(x, 2, x).
n—0o0

Therefore

p(z,z,x) < p*(z,z,2) +p*(y,y,9) — P (2,,9),
which shows that p*(y,y,y) < p*(z,y,v) < p*(y,y,y). Also,

P, y,y) =0 (W, 9, 2) <P (Y, Y, 2n) + P (T, 2, 2) = p*(Tn, Tn, Tn)
implies that
P (@n; Tn, n) < Y (Y, Y, 2n) + p* (T, 2z, @) — ™ (2,9, 1),

which on taking limit as n — oo gives

P Wy y) <P (Y, y,9) +p' (2, 2,2) — p*(2,9,9),
which shows that

pr(@,@,2) < p(x,y,y) < p'(z, @, 2).

Thus p*(z, z,x) = p*(z,y,y) = p*(y,y,y). Therefore z = y. O

Lemma 5. Let {z,} and {y,} be two sequences in partial D*-metric space
(X, p*) such that

lim p*(zp,z,x) = lim p*(zy, Tn, z,) = p*(z, 2, 2),
n—oo n—oo

and
im p*(yn, ¥, y) = Hm p*(Yn, Yn. yn) = 0" (¥, 4, )
n—o0 n—oo
Then Um p*(Tn,Yn,yn) = p*(z,y,y). In particular, lGm p*(x,,yn,z) =
n—0oo n—oo

p*(x,y, z) for every z € X.
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Proof. As {z,} and {y,} converge to a x € X and y € X respectively,
therefore for each ¢ > 0 there exists ng € N such that

g
p*(l',.iU,.Tn) < p*(LE, z, 33') + 57

* 3 8
P (Y, Y yn) <0 (v, y,y) + 2
p*(x7‘%.7xn) <p*(xn7xn;xn) +

)

| ™

and
* * E
P (Y, ¥, Yn) < D" (Yn> YnsYn) + 3
for n > ng. Now
p*(xn, xn;yn) S p*(.’L’n,l‘n,l‘) +p*($, Yn, yn) - p*($,$,$
< p* (@n, T, ) + 05 (Y, Yn, yn) + 0" (2,2, y)
0" (y,y,y) —p*(z,x, )

< p*( )+€+8
- €.t
P@yy)+5+3

=p*(z,y,y) +¢,
and so we have
p*($n7 Yn, yn) - p*(ma Y, y) <e.

Also,
P (7, 9,y) < p*(Tn, Y, y) + 0" (2, 7, 70) — P (Tny T, Ti)
<p'(z,z,2n) + D" (Tns Tny Yn) + D" (Yns ¥, )
= D" (Yns Yns Yn) — P (Tn, Tn, Tn)
<< + = + p* (2, T, Yn)
22

= p*(Tn, Tn,Yn) + €.

Thus

p*(xa 'CE?y) _p*(xn7$na yn) <e.
Hence for all n > ng, we have [p*(zy, Tn,yn) — p*(x,z,y)| < €. Hence the
result follows. O

Lemma 6. If p* is a partial D*-metric on X, then the functions p**, p*™ :
X x X x X = R given by
P,y 2) = p (2, 2,y) +P"(y,y,2) +p7(2,2,2)
—p*(z,z,2) = p*(y,y,y) — p*(2,2,2)
and
2p*($, z, y) - p*($, T, l’) - p*(ya Y, y)7
T,y,z) =maxq 2p"(y,y,2) —p*(y,4,y) — p* (2,2, 2),
20 (z,z,2) — p*(2, 2, 2) — p*(z, x, x)

p

*m(
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for every x,y,z € X, are equivalent D*-metrics on X.

Proof. Tt is easy to see that p*° and p*"* are D*-metrics on X. Let z,y,z €
X. It is obvious that

P (z,y,2) < 207 (2,9, 2).
On the other hand, since a + b + ¢ < 3max{a, b, c}, it provides that

P (z,y,2) = p*(z,2,y) + 0" (y,9,2) + P (2, 2,2) — p* (2, x, x)
-0 (¥, v,y) —p*(2,2,2)

S120° (2, 2,9) — 9 (5,2, ) — 9" (4,9, 9)]
+ [219*(31»97 Z) _p*(yaya y) —p*(z,z,z)]

+

N — N

[2]9 (Z 2 :E) p (Z,Z,Z) —p*(ZL',:E,SL‘)]

3 p*(z,x,y) — p* (2, 2,2) = p* (Y, 4, 9),
< gmax{ 2p%(y.y,2) =0 (4.9, y) — 1" (22, 2),
p*(z,z,x) — p*(z, 2,2) — p*(z, x, x)

3

*m(

T,y 2).

Thus,we have

1 3
P @y, 2) < p(ay, 2) < Sp (Y, 2).
These inequalities implies that p*® and p*™ are equivalent. O

Remark 3. Note that:

P (z,z,y) =2p" (x, z,y) — p*(z,x,2) — p*(y,y,y) = p""(z,z,y).

A mapping F : X — X is said to be continuous at xg € X, if for every
€ > 0, there exists ¢ > 0 such that F(Bp+(z9,0)) C Bp+(Fxo,¢).

The following lemma plays an important role to prove fixed point results
on a partial D*-metric space.

Lemma 7. Let (X,p*) be a partial D*-metric space.
(a) {zn} is a Cauchy sequence in (X, p*) if and only if it is a Cauchy
sequence in the D*-metric space (X, p*®).
(b) A partial D*-metric space (X, p*) is complete if and only if the D*-
metric space (X,p*®) is complete. Furthermore,

lim p*s(IL‘n,:En,l’) =0
n—00

if and only if

p*(z,z,2) = Um p*(xp,zp,x) = lm  p* (@, 2n, Tm).
n—00 n,m—oo
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Proof. First we show that every Cauchy sequence in (X,p*) is a Cauchy
sequence in (X, p*®). To this end let {x,} be a Cauchy sequence in (X, p*).
Then there exists a € R such that, for given € > 0, there is n. € N with
[P* (%, Tn, o) — af < § for all n,m > n.. Hence

p*s(xn7$n7$m) = 2p*($n7$n7$m) - p*(fUmﬂ?n,ﬂ?n)

— " (T, T, Tn) + 20 — 2a
S ‘2p*($naxn7xm) - 20" + |P*(»Tn,$n733n) - Oé|
+ ]p*(xm,a:m,xm) —af

9
4—:
<4y =¢

for all n,m > n.. Which implies that {z, } is a Cauchy sequence in (X, p**).
Next we prove that completeness of (X, p*®) implies completeness of (X, p*).
Indeed, if {x,} is a Cauchy sequence in (X,p*) then it is also a Cauchy
sequence in (X, p*®). Since the D*-metric space (X,p*®) is complete we
deduce that there exists y € X such that nlgrolo p**(zpn, Tn,y) = 0. Therefore,

lim sup |p*(2n, Tn,y) — " (¥, 4, Y)|

n—o0

< lim 2p*(zn, Tn, y) — D" (@, Tn, ) — P* (¥, 4, y)| = 0.

n—oo

Hence we follow that {x,} is a convergent sequence in (X, p*). That is,
lim p*(zn, 20, y) = p* (¥, 4, y)-
n—oo

Now we prove that every Cauchy sequence {x, } in (X, p*®) is a Cauchy se-
quence in (X, p*). Lete = %, then there exists ng € N such that p**(xy,, 2, Ty) <
% for all n,m > ng. Since

P (Tn, Tn, Tn) < 4AP™ (Tng, Tngs Tn) — 30" (T, Tn, Tp)
- p*(xnm Tngs xno) + p*(xn; Tn, xn)
S 2p*s(l'n7 xﬂn xno) + p*(xno7 x’noa xno)‘

Thus, we have

p* ('rn7 ‘TTM mn) S 2p*s(xn7 x?’“ xno) + p* (xnoa xnoa '1:710)

<1 +p*(xn07xn07xno)‘

Consequently the sequence {p*(zy, Zn, zy)} is bounded in R, and so there
exists an a € R such that a subsequence {p*(zy, , Tn,, Tn,)} is convergent to

a,ie. lim p*(zp,, Zn,, Tn,) = a.
k—o0
It remains to prove that {p*(zy, z,, x,)} is a Cauchy sequence in R. Since

{zy} is a Cauchy sequence in (X, p*?), for given € > 0, there exists n. such
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that p**(zn, Tn, zm) < § for all n,m > n.. Thus, for all n,m > n.,
D" (%0, Ty Tn) — P (Tms Ty Tn)| < 4D™ (T, Ty Tin)
= 3p™ (@, Tny Tn) — P (T, Ty Tin)
+ " (Xn, Ty Tn) — P (Tm), Ty Tim)
< 20" (@, Ty Ti) < €.
On the other hand,
P (@0, Ty Tn) — al <[P (Tns Ty Tn) — P (Tngs Ty Ty, )|
+ ‘p*(xnk7xnk7xnk) — al
<e4e=2¢
for all n,n; > n.. Hence T}Ln;op*(xn,xn,xn) = aq.

Now, we show that {x,} is a Cauchy sequence in (X, p*). We have,
12p" (¥, Ty Tm) — 20| = |P** (T, Tny Tin) + P (Tny Ty Tn)

—a+p (Tm, Tm, Tm) —a

< p*s(mna Tn, xm) + ’p*(-%'n, Tn, -rn) - a’
+ ’p*(xwuwma xm) - CL|
€ 9
< =+ 2+ 2= —¢.
2 et 2
That is, {xy} is a Cauchy sequence in (X, p*).
We shall have established the lemma if we prove that (X, p*®) is complete
if so is (X, p*). Let {z,} be a Cauchy sequence in (X, p*®). Then {z,} is a
Cauchy sequence in (X, p*), and so it is convergent to a point y € X with,

lim p*(zn, Tn, Tm) = nlggop*(y,ijn) =p"(y,v,v)-

n,Mm—00

Thus, for given € > 0, there exists n. € N such that

* € * * €
Py y0n) =2y, y) < 5 and [p7(y,y,y) = p*(@n, Tn, 20)| < 3
whenever n > n.. As a consequence we have

P (Y, v, xn) = 20% (v, y, 2n) — P (Tny Ty 2n) — D" (¥, 4, Y)
<P, v, 70) — 0" (W, ¥, )| + [P (¥, ¥, Tn) — P (Tns Ty )|
3 &
3t Te

whenever n > n.. Therefore (X, p*®) is complete.

Finally, it is a simple matter to check that lim p*®(a,a,z,) = 0 if and
n—oo

only if

p*(a,a,a) = lim p*(a,a,z,) = lim p*(zp, Tn, Tm)- O
n—+00 n,m—00
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Definition 4. Let (X,p*) be a partial D*-metric space, then p* is said to
be of the first type if for every x,y € X we have

Pz, z,y) < p*(2,y, 2),
for every z € X.

3. FIXED POINT RESULT

We begin this section giving the concept of weakly increasing mappings
(see [5]).

Definition 5. Let (X, =) be a partially ordered set. Two mappings S, T :
X — X are said to be S-T weakly increasing if Sx < TSz for all x € X.

Note that, two weakly increasing mappings need not be nondecreasing.
There exist some examples to illustrate this fact in [4].
In the sequel, we use the following notations:

(i) F denote the set of all functions F : [0,00) — [0,00) such that F'
is nondecreasing and continuous, F'(0) = 0 < F(t) for every t > 0
and F(x +y) < F(x) + F(y) for all z,y € [0, +00);

(ii) ¥ denote the set of all functions ¢ : [0,00) — [0,00) where 1)
is continuous, nondecreasing function such that > > ™ (t) is con-
vergent for each ¢t > 0. From the conditions on ¢, it is clear that
nlggo Y™ (t) = 0 and ¢(t) < t for every t > 0.

Our main result is as follows:

Theorem 1. Let (X, <) be a partially ordered set and suppose that there
exists a first type partial D*-metric p* on X such that (X,p*) is a complete
partial D*-metric space.

Let SST,R : X — X are three S-T, T-R and R-S weakly increasing
mappings such that

(3.1) F(p*(Sz, Ty, Rz)) < Y(F(p(r,y,2)))

for all x,y,z € X with x,y,z are comparable with respect to partially order
=<, where F' € F, ¢ € ¥ and

_ p*(q;,y,z)7p*(w,$,s$),
(3.2) ple.y,2) = max{ Py, 9, Ty),p* (2.2, Rz) [

Further assume that if for every increasing sequence {x,} convergent to x €
X we have z, < x.
Then S, T and R have a common fized point.

Proof. Let x¢ be an arbitrary point of X. We can define a sequence in X as
follows:

T3n41 = ST3n , Tant2 = TT3p41 and 3,43 = Ragnie for n=0,1,....
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Since S, T, R are three S —T, T'— R and R — S weakly increasing mappings,
we have

xr1 = SZL’Q j TS.%'() = X9 = Txl j RT.TUl = X3 = R.%'Q j SRJL‘Q = T4
and continuing this process we have
Ty L2 DTy R T v

Case: Suppose there exists ng € N such that p*(23n0, Z3ng+1, T3ng+2) = 0.
Now we show that p*(Zsng+1, T3ne+2, T3ng+3) = 0. Otherwise, from (3.1),
we get

F(p"(3no+2, T3no+2: Tng+3)) < F (D™ (T3n0+1: T3ng+2, T3n0+3))
(2" (SZ3n0, T30 +1, RT3n9+2))
(F(¢(23n05 T3no+1, T3ng+2)))

(F(23n042> T3n0+2> 3ng+3))

IN

F
(&
(&

< F(Z3n0+2, L3ng+2, L3no+3))s

which is a contradiction. Hence p*(z3ny+1, Z3n0+2; Z3ne+3) = 0. Therefore,
T3ng = T3ng+1 = T3ng4+2 = T3ng4+3. Lhus Sx3,, = T3, = RT3n, = T3n,-
That is 3y, is a common fixed point of S,7T" and R.

Case: Assume that p*(x3y,, T3n+t1, Tant2) > 0 for every n € N.
Now we prove that

(33> F(p*(xn—la Tn, xn—l—l)) < 1/1(F(P* (xn—Za Tn—1, xn)))
Setting © = 35, , Yy = T3p41 and z = x3,49 in (3.2), we have

%
p ($3n,$3n+1,$3n+2),

*(23n, T3n, L3n+1),
333n+1a x3n+17 $3n+2)7

(3042, T3n+2, T3n+3)

(30, T3n11, T3n42) = Max p*g
(

Since, p* is of the first type, we get

©(x3n, T3n+41, T3nt2) < max{p*(z3n, T3n+1, T3n+2), P (L3041, T3n42, T3n+3) }-

If p*(x3n+1, T3n+2, T3nt3) is maximum in the R.H.S. of the above inequality,
we have from (3.1)that

F(p*(x3n41, T3n+2, T3n+3)) = F(p*(S23n, T23n41, RT3n42))
< w( ( (l’3n,$3n+1, x3n+2)))
S 1//( (max{p T3n, x3n+17 x3n+2>
P* (5133n+1, T3n+2, 933n+3)})>

= (F(p* (T3n+1, T3n+2, $3n+3)))

< F(p"(z3n+1, T3n+2, T3n+3)):
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which is a contradiction. Thus,

F(p*(z3n+1, T3n+2, T3n+3)) < Y(F (0" (230, T3n+1, Tant2))-

Similarly, we have

F(p* (23042, T3n+3, ©3n+4)) < Y(F(p" (3041, T3n+2, L3n+3)))s
and
F(p*(z3n, T3n+1, T3n+2)) < Y(F(p* (3n-1, T3n, T3n+1)))-
Therefore, for every n € N we have
F(p*(xna Tn+1, xn+2)) < TZJ(F(p*(mn—l, T, xn—i—l)))-

Now, we have
F(p*(zn, Tnt1, Tn2)) S OEF @ (Tp-1,%n, Tny1))) < - <P (F(p*(v0, 21, 22)))-

Hence
lim F(p*(2n, Tni1, Tns2)) = 0,

n—o0

so that

(34) lim p* (mn’ Tn+1, xn+2) =0.
N—00

Since p*is of the first type and F is nondecreasing, we have

F(p*($naxn7$n+l) < F(p*($n,:€n+1,l‘n+2)) < ¢n(F(p*($07$17$2)))-

Since F(x +y) < F(z) + F(y) and p** (2, Tn, Tny1) < 20" (Tn, Tn, Tny1) we
have

F(p*s(mn,xn,ajn+1) S 2F(p*(Tn, Tn, Tng1)) < 29" (F(p* (20, 21, 22))).

Now from p*s(xn—l—kv Ln, xn) < P*s($n+k, Ln+k-1, xn+k—l)+' : '+P*s($n+17 Ln, xn)a
we have

F(p*S(JUn—l—k’ Tn,s xn)) < F(p*s(xn+k7 Tn4k—1, xn—&—k—l)) + -+ F(P*S(xn—i-h Tn,s In))
< 20" RN (p* (o, w1, 22)) + -+ + 20" (p* (w0, 71, 72))

<2 Z W (p* (w0, 71, 2)).

[e.e]
Since Y ¥"(t) is convergent for each ¢ > 0 it follows that {z,} is a
n=1

Cauchy se?luence in the D*-metric space (X, p*®). Since (X, p*) is complete,

then from Lemma 7 follows that the sequence {z,} converges to some z in

the D*-metric space (X,p*®). Hence lim p**(x,,z,z) = 0. Again, from
n—oo

Lemma 7, we have

(3.5) p*(z,z,2) = lim p*(xn,z,z) = lim p*(zn, Tm, Tm).
n—00 n,m—00

Since {x,} is a Cauchy sequence in the D*-metric space (X, p*®) and

p*s(xna Ty Tm) = 20" (s Ty Ten) — P Ty Ty Tn) — P (s Ty T )
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we have

. *S
lim p (IEn,SCm,xm) =0
n,m—00

and by (3.4) we have

. *
lim p*(xn, Tp, ) =0,
n—o0

thus by definition p*® we have

lim p*(zn, Tm, zm) =0.
n,m—00

Therefore by (3.5), we have
p*(z,z,x) = lim p*(x,,x,x)
n—oo

= lim p*(@n,Tm,xTm) = 0.
n,Mm—00

Now by the inequality (3.1) for z = x, y = 3,41 and z = x3,42, then we
have
F(p*(Sz, x3n+2, B3n+3)) < V(F(0(@, T3n+1, T3n42)),
and by letting n — oo and using Lemma 5, we obtain

F(p*(Sz,x,z)) < Y(F(p*(Sz,z,z)) < F(p*(Sx,z,x)),

which is a contradiction. Hence, p*(Sz,z,2) = 0. Thus Sz = x. Similarly,
by using the inequality (3.1) for y = = , * = 23, and z = x3,42, then we
have

F(p* (1:3”7 Tz, l’3n+3)) < ¢(F(90(1‘3n, xz, x3n+2))7

and letting n — oo and using Lemma 5, we obtain
F(p* (2, Tz, 2)) < O(F(p"(2, T, 3)) < F(p*(, T, 7)),

which is a contradiction.
Hence, p*(z,Tz,x) = 0. Thus Tz = x. Similarly, by using the inequality
(3.1) for z =z, = x3,, and y = x3,+1, we can show that Rz = . O

Corollary 1. Let (X, =X) be a partially ordered set and suppose that there
exists a first type partial D*-metric p* on X such that (X,p*) is a complete
partial D*-metric space.

Let S: X — X be a mapping such that Sz < Sz and

(3.6) F(p*(Sz, 5y, 52)) < (F(p(2,y,2)))

for all x,y,z € X with x,y, 2z are comparable with respect to partially order
=<, where F' € F, ¢ € ¥ and

_ p*(i,y,z),p*(%,l‘,s.’ﬂ),
(37> cp(x,y,z) _maX{ p*(y)y7sy)7p*(z)zvsz)‘

Further assume that if for every increasing sequence {x,} convergent to x €
X we have x,, <X T.
Then S has a fized point.
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Example 7. Let X = [0,00) and p*(z,y,z) = max{z,y, z}, then (X,p*) is
a partial D*-metric space.
Define self-map S on X as Sz = §, and the relation < on X as follows:

Ty &=z 2>y,

for any x,y € X. Then = is a (partial) order on X induced by <. Since
Sz > S%x it follows that Sx < S?x. If define F(t) =t and (t) = kt for
0 < k <1 then it is easy to see that

p*(Sz, Sy, Sz) < kp(x,y,2),

for every x in X and % < k < 1. Thus all conditions of Corollary 1 are
satisfied and x = 0 is the unique fized point of S.
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